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FROM A BLUNT BODY SHOCK LAYER IN AN ARC-JET WIND TUNNEL
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Eloret Institute, Palo Alto, CA 94303

Roger A. Craig**
MCAT Institute, Moffett Field, CA 94035

and

Chul Parkt, Grant Palmer* and Surendra P. Sharma :_

NASA Ames Research Center, Moffett Field, CA 94035

Abstract

Spectra of the shock layer radiation incident on the

stagnation point of a blunt body placed in an arc-jet wind

tunnel were measured over the wavelength range from 600
nm to 880 nm. The test gas was a mixture of 80% air and

20% argon by mass, and the run was made in a highly

nonequilibrium environment. The observed spectra con-

tained contributions from ato_nic lines of nitrogen, oxy-
gen, and argon, of bound-free and free-free continua, and

band systems of N2 and N +. The measured spectra were

compared with the synthetic spectra, which were obtained

through four steps: the calculation of the arc-heater char-

acteristics, of the nozzle flow, of the blunt-body flow, and
the nonequilibrium radiation processes. The results show

that the atomic lines are predicted approximately cor-

rectly, but all other sources are underpredicted by orders

of magnitude. A possible explanation for the discrepancy
is presented.

Nomenclature

A = Einstein A-coefficient.

E = Energy level of emitting state, cm. -1

g = Statistical weight of the emitting state.
hv = Photon energy, cm -x,

I = Intensity of a spectral line, W/(cm2-p-sr).

T = Heavy particle translational temperature, K.
Te = Electron-electronic temperature, K.

I", = Vibrational temperatue, K.

V = Flight velocity, km/s.

Introduction

For the last few decades, characterization of the radi-

ation phenomena in the nonequilibrium region of a shock

layer over a blunt body flying in high velocity, low density

environments has been the focus of the efforts of many
researchers. During an atmospheric entry, a spacecraft

passes through the regime of altitudes where the flow be-
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hind the shock wave is in nonequilibrium in both chemical
composition and internal thermal modes. It is known that

the intensity of the radiation is strongest in the middle of

the nonequilibrium zone. 1 For entry speeds in excess of 10

km/s for Earth and 8 km/s for Mars and Venus, nonequi-
librium radiation is the major source of heat transfer to

the stagnation region. 1'2 For this reason, a flight experi-

ment, called the Aeroassist Flight Experiment (AFE), had

been proposed at one time for the purpose of determining
the intensity of this radiation. 3,4

Predicting the flowfield around an entry body for an "

equilibrium regime and the radiation emitted by the equi-

librium flowfield can be done more confidently; predict-

ing nonequilibrium radiation is difficult because of the
complex nature of the nonequilibrium radiation phenom-

ena. However, in the last few years, through concerted
theoretical 5-s and experimental 9-12 efforts, it became

possible to predict the radiation features in the region of
peak nonequilibrium radiation with fair accuracy. This is

accomplished by using a computer code named Nonequi-

librium (NONEQ), s which is an expanded version of the

code Nonequilibrium Air Radiation program (NEQAIR),6
which accounts for the nonBoltzmann populations of elec-

tronic states and carries out detailed line-by-line calcula-
tion of both atomic and molecular lines.

Questions remain as to how well the NONEQ code pre-

dicts the radiation phenomena in the very low density

regime where the nonequilibrium peak does not occur in

the shock layer. That is, the truncated flow where the
available flow time is shorter than the time needed for the

flow to reach the peak nonequilibrium radiation point.

Recently, two flight experiments, named Bow Shock 1
and Bow Shock 2, have been conducted in which the

NO Gamma band radiation incident on the stagnation

point was measured at flight speeds of 3.5 and 5.2 km/s,

respectively, la The results show that the NONEQ code
predicts the radiation intensities quite well in the equi-

librium and moderately nonequilibrium regimes but un-
derestimates it by many orders of magnitude in severely

nonequilibrium regimes. The discrepancy between the

theory and measurement is less for the 5.2 km/s flight

than for the 3.5 km]s flight. Despite intensive theoretical

study of this phenomenon, the discrepancy has not yet

been satisfactorily explained. 13

The flow regime of this large discrepancy is illustrated

in Fig. 1. The figure shows the behavior of the trans-
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lational temperature T, vibrational temperature T_, and

radiation emission power behind a normal shock wave in a

one-dimensional flow computed using the NONEQ code.

The freestream conditions are those of the present exper-
iment to be described in detail later. As seen here, the

radiation emission peaks. If the shock layer thickness is

larger than the distance to the peak radiation point, as

indicated in the figure as the AFE vehicle condition, then
the fiowfield can be said to be in moderate nonequilibrium.

The existing NONEQ and similar codes correctly predict

the total radiation power emitted in this case. A highly
nonequilibrium flowfield is one in which the shock layer

thickness is shorter than the distance to the peak radiation

point, as indicated in the figure as the present arc-jet test
condition. The discrepancy between the measurements

and calculations for the Bow Shock flights occurred when

the flow environment was in this highly nonequilibrium

regime.

i 2.0

1.5 _"

1.0

%

0.5

0.0

0 5 10 15 20 25 30

Distance from shock, cm

Fig. 1. Comparison between the relaxation distance and

flow lengths for the present experimental condition.

The purpose of the present work is to study the ra-

diation phenomena in this highly nonequilibrium regime,

where, as shown in Fig. 1, the available flow distance
is shorter than the distance needed for the flow to reach

peak radiation. The study is conducted at an enthaipy

corresponding to a flight speed of 7.8 km/s. If the trend

observed in the flight experiment holds true, that the dis-

crepancy is smaller at higher flight velocity, one would

hope that there would be little or no discrepancy be-

tween the present data and the calculations made using

the NONEQ code at this enthalpy level. If the discrep-

ancy between experiment and calculationstillexists,the

study should contributeto elucidatethe nature ofthe dis-

crepancy.

The experimental work is carriedout with a model

placed in the testsectionof an arc-heated wind tunnel.

The radiationincidenton the stagnation point of a fiat

circulardisk is detected using a grating spectrograph.

Observations were made in the near infrared wavelength

range from 60{) to 880 nm. This spectral region is cho-

sen because it contains strong and well characterized lines

from nitrogen and oxygen atoms and molecular band radi-
ation from the N2 First Positive system. In addition, there

are bound-free and free-free continua that can potentially

contribute to the overall background radiation. By com-

paring the intensities of these different radiation sources,

an insight about the nature of the highly nonequilibrium
regime can be gained.

In order to produce a synthetic spectrum for the exper-
imental condition, the thermochemical state of the flow

in the test section of the arc-jet wind tunnel is calcu-

lated using the best available computer code. TM The en-

thalpy value input into the code is calculated from the arc
heater characteristics Is and the results of the heat trans-

fer measurements to a sphere placed in the freestream.

The nonequilibri_m relaxation phenomena in the shock

layer are then calculated using both the one-dimensional
NONEQ code and a two-dimensional code. 16 Little differ-

ence was seen between the results of the one- and the two-

dimensional calculations. The radiative transport calcu-

lation was then carried out through the shock layer using
the NONEQ code.

When the results of the computations are compared

with the experimental data, it is found that the computa-

tions severely underestimate the intensity of continua and

molecular bands by several orders of magnitude. Thus, it

is concluded that the trend seen in the flight experiments

at 3.5 and 5.2 km/s still prevails at the equivalent flight
speed of 7.8 km/s. No satisfactory explanation for this

discrepancy has been found.

Experiment

Experimental Setup

The experimental procedures are presented in detail in

Refs. 17 and 18. However, a brief description is given here

for completeness. Fig. 2 shows the schematic of the over-

all arrangement of the model and the radiation detection
system. The experiment is conducted in a constricted arc

wind tunnel at Ames Research Center rated at 20 MW,

known as the Aerodynamic Heating Facility. The test was

made at one run condition, which is given in Table 1. The

area ratio of the nozzle, deduced from Pitot impact pres-
sure measurements at the station where the model was

located, is 113.

Table 1. The operating conditions of the arc-heater.

Electrical current 950 amperes
Electrical voltage 1800 volts

Electrical power input 1.71 MW

Test gas mass flow rate 0.034 kg]s

Test gas mixture by mass 80% air,20% Ar

Arc-heaterefficiency "0.43

Mass-averaged enthalpy 21.5 MJ/kg

Centerlineenthalpy 57.3 M:l/kg
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In addition to air and argon, a small amount of cop-

per is in the stream, which, based on the mass loss of
the electrodes, is judged to be about 50 ppm by volume
on the average. 14 Vaporization of copper electrodes oc-

curs mostly during the start-up and shut-down processes.
During the run, copper vaporization is small when the set-

tling chamber pressure is low. At 1 atm settling chamber

pressure maintained in the present study, the copper con-

tent in the flow is believed to be much less than 50 ppm.

Such low concentration of copper vapor is inconsequen-
tial to the flow properties, 14 and therefore the presence of

copper is neglected.

In order to determine the flow enthalpy, the char-

acteristics of the arc discharge in the arc-constrictor

are first calculated using the code Arc Heater Flowfield

(ARCFLO). 15 The code yielded the centerline enthalpy
value of 57 MJ/kg at the exit of the constrictor. In the

past, the centerline enthalpy values have been compared
with the enthalpy values deduced from the heat trans-

fer rates to the stagnation point of a sphere placed in the

flow. The heat transfer rate-deduced enthalpy values were

slightly more than half the centerline enthalpy value at the
exit of the arc constrictor. The difference is believed to

be caused by the mixing in the settling chamber placed
between the exit plane of the arc constrictor and the noz-

zle entrance. 2° Based on this observation, the enthalpy in

the test section is judged to be approximately 30 MJ/kg.
The equilibrium conditions based on this enthalpy value

and the known pressure in the settling chamber are given
in Table 2.

Table 2. Calculated settling chamber conditions.

Pressure 1.02 atm

Temperature 7780 K

Centerline enthalpy 30 4- 3 MJ/kg
Ar mole fraction 8.88 -2

N2 mole fraction 7.29 -2

Oz mole fraction 0

NO mole fraction 9.20 .4

N mole fraction 6.29 -1
O mole fraction 2.06 -1

Ar + mole fraction 8.44 .5

N + mole fraction 7.23 -4

O + mole fraction 1.94 -4

NO + mole fraction 2.22 -4

e- mole fraction 1.22 -3

Fig. 3 shows a schematic view of the model. The model

face is a flat circular disk 15 cm in diameter with the

edge rounded to approximately 3 mm radius. A small

aperture centered on the forward face admits the surface

radiative flux. The viewing optical axis is canted 15o from

the centerline in order to reject the direct irradiation from

the arc constrictor. A magnesium-fluoride window, cooled

with a flow of helium, is placed in a cavity below the

aperture to transmit the radiation signal into the optical

system. The optical system consists of two flat mirrors

and two concave mirrors. The first flat mirror turns the

direction of the oncoming beam to the first concave mirror
(see Fig. 2). The parallel beam produced by this concave

mirror is refocused by the second concave mirror. The

beam from the second concave mirror is turned by the
second flat mirror and directed into the entrance slit of

a grating spectrograph. The system is water-cooled, and

the optical path was evacuated during the test in order to

eliminate the uncertainty caused by absorption.

During the run, a luminous shock layer is visible to the

eye. The stand-off distance of the visible shock layer was

determined to be approximately 4 cm.

0.5-m UV spectrograph

• x_._ C°ncave mlrr°r

II I11 Standing II

nlng mirror

Fig. 2. Schematic of the present experimental setup in
the Ames 20 MW Aerodynamic Facility.

Shock
_. [////_ Turning mirror

MgF2wind°w f VA /",- /

.... _, _ I///J TO spectrograph
15" ofl axis \ V//I o tics• gA .

Vacuum

Fig. 3. Schematic of the optical arrangement within the
model.
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The spectrograph was a McPherson model 216.5

Czerney-Turner instrument with a focal length of 0.5 me-
ter with an exit film plane of a 10 cm span. With a grat-

ing of 300 grooves per millimeter, the instrument has a

reciprocal dispersion of 6.6 nm/mm and a theoretical res-

olution of 0.13 nm, and allows a spectral range of 660

nm to be recorded in a single exposure. As mentioned
in Introduction, the radiation measurement was made for

the near infrared wavelength range from 600 to 900 nm.

This region contains a number of spectral lines from ni-

trogen and oxygen atoms with known transition probabili-
ties and the well-characterized N2 First Positive band sys-

tem. The sensitivity of the film used declines rapidly be-

yond 880 nm. In separate measurements, radiation from

the visible range from 300 to 600 nm, and that from the

vacuum ultraviolet range from 120 to 300 nm, were also
made. Preliminary results for the visible and the vac-

uum ultraviolet spectra are presented in Refs. 18 and

19, respectively. In addition, spectral measurements were
made in the visible wavelength range from the direction
normal to the nozzle axis to obtain the radiation inten-

sities from the shock layer as a function of the distance

from the model wall. This work will be presented in the

future also. The present measurements were made photo-

graphically because the radiation signal was too weak to
be measured reliably with a photoelectric method while

maintaining a sufficiently high wavelength resolution.

A grating with 300 grooves/mm blazed at 500 nm was

used for the experiment. In the experiment, an exposure

of 8 min was made on a Kodak High Speed Infrared Film.

Exposures were also made of a calibrated tungsten ribbon

lamp on the same film, all for the same 8 min exposure.

1.0_

0.8-

0.6

0.4

"O

_. 0.2
0

0.0

6000

-- .&rc-lel ella
CallNalion lamp data

_I"

7000

I !

I-
i

In

I

8000 9000

Wavelength, A

Fig. 4. Microphotodensitometer traces of the spectra

obtained in the arc-jet test and the calibration lamp with

varying slit widths.

The lamp was placed in front of the model, and the lu-

minous surface of its heated tungsten ribbon was imaged
on the stagnation point using a concave mirror. The solid

angle of this setup was identical to that of the arc-jet ex-
periment. The exposure from the calibration lamp was

controlled by the combination of a neutral density filter
and the width of the entrance slit. Second order effect

was negligible for the calibration lamp.

Photographic Data

The microphotodensitometer trace of the photographic
data of the arc-jet test is compared with those of the cal-

ibration lamp in Fig. 4. The ordinates in this figure rep-

resent optical densities of the film, that is, the logarithm
of the attenuation of a light beam through the film. As

seen here, the spectral intensities in the arc-jet data are

approximately within the range covered by the calibra-

tion traces. The absolute intensity values of the arc-jet

data are determined at each wavelength through interpo-
lation between the calibration values. This was done at

wavelength intervals of 0.017 nm, resulting in a total of

16862 wavelength points. At each wavelength point, an
intensity-optical density curve is constructed as shown in

Fig. 5. The calibration points were fitted with a Gaussian
curve using a least-square curve-fit method. The radia-

tion intensity is deduced from the opticM density of the

experimental data using this curve.

0.8

t_
O

fn 0.6

.e
m

o 0.4

¢=
III

"0

._ 0.2 -

O

0.0

100

J, i i i i i Ill i L

• Calibra_on lamp data •

Gausslan curve-fit /

/

1000

i

2 3 4

Log (intensity)

Fig. 5. The relationship between optical density and ra-

diation intensity.

The spectrum containsthe distinctfeaturesof atomic

linesand complicated background features.Most of the

atomic linesare identifiedto belong to eithernitrogen,

oxygen, argon, or copper. There are stillunidentified

lines,however. Identifiablefeaturesof the N_ FirstPosi-

tiveband system were seen throughout the observed wave-
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length regions, and a weak feature of the N + First Nega-

tive system was identified at wavelengths below 670 nm.

Second-order images were too weak to be identified.
The area under the curve for each atomic line was cal-

culated in order to determine the overaJ] average line in-
tensity over the inhomogeneous shock layer. These inten-

sity values are plotted in an atomic Boltzmann plot in

Fig. 6. As seen in the figure, the three atomic oxygen
lines give an equivalent average Boltzmann temperature

of about 27000 K, whereas the nitrogen lines give about

12000 K. These equivalent temperatures are considerably

higher than the equilibrium temperatures listed in Table

2. This is a consequence of strong nonequilibrium phe-
nomenon in the shock layer.

I I [
14-

• O fines, experiment

0 0 lines, correc[ecl for nonequilibrlum

1 2 - • N lines, experiment
o N lines, correcled for nonequilibrlum

Equivalent letup, experiment

1 0 -- - .... Equivalent letup, corrected _

o
r- _>'- T=8200 K

< eb-. /O) 8- @'..._ "'... J --

¢::: @'Q T-12 ".A

"J *'°°°....°....._..
S- "_ -

Tl27000 K

2-
I I [

80 90 100 110 120
Energy level xlO "3 , crn"1

Fig. 6. Atomic Boltzmann plot of the selected atomic

oxygen and nitrogen lines obtained from the experiment.

It is known that the lower excited states tend to be un-

derpopulated with respect to the equilibrium values at low

densities due to radiative depopulation. This is because

(i) the radiative depopulation rate (Einstein A-coefficient)

is larger for lower states than for the upper states, and (ii)

the upper states tend to be in equilibrium with the free

state. The extent of this underpopulation can be calcu-
lated using the NONEQ code. The calculation shows that

the emitting levels of the oxygen lines in Fig. 6 emanating

at energy levels around 87000 cm -1 are underpopulated

by a factor of 0.23 with respect to the equilibrium value,

while the population of the emitting levels around 113000

cm -1 is unaffected. For nitrogen, the lower and the upper

groups of the levels are depopulated by factors of 0.41 and

0.86, respectively. When this phenomenon is accounted

for, the deduced effective average temperatures over the

shock layer are 12300 K for oxygen and 8200 K for nitro-

gen, as shown in the figure. These values are closer to the

equilibrium temperature given in Table 2.

Comparison With Calculations

Computational Method

The thermochemical nonequilibrlum relaxation pro-

cessesin the nozzleare calculatedusing the one-dimen-

sionalNonequili_rl_imn-Temperature (NOZNT) code.14

The code recognizesthe differencesamong the vibra-

tionaltemperaturesofdifferentmoleculesbut assumes the

electronicexcitationto be characterizedby the electron

temperature. The electron-electronictemperature isnot

equated to the vibrationaltemperature of any species.

The code has been validatedagainstthe existingexperi--
mental data inRefs. 14 and 21.

Table 3. Test section freestream conditions (NOZNT so-

lution).

Geometrical area ratio of nozzle

Centerline enthalpy
Equivalent flight speed

Static pressure

Density

Heavy particle temperature

N2 vibrational temperature
NO vibrational temperature

Electron-electronic temperature

Mean free path

Equivalent flight altitude

Velocity
Mach number

Total number density
Ar mole fraction

N2 mole fraction

O2 mole fraction
NO mole fraction

N mole fraction

O mole fraction
Ar + mole fraction

N + mole fraction
O + mole fraction

NO + mole fraction

e- mole fraction

Model

Shape
Diameter

Shock standoff distance

Equivalent sphere radius in flight
Knudsen number (for 15 cm)

Reynolds number (for 15 cm)

113

30 :k 3 MJ/kg

7.75 km/s
9.6 -5 atm.

5.60 -s kg/m 3
321 K

4100 K
910 K

6170 K

0.123 cm

71.6 km

4890 m/s
10.1
2.13Iscm -3

9.30-2

1.22-=I

0

2.55 -3

5.66-1

2.15 -1

6.88 -s

4.93 -4
1.53 -4

1.33 -17

7.15 -4

flat circular disk

15 cm
_4cm

60 cm

0.0328

2700

In Figs. 7(a) and (b), the calculated temperatures and

species concentrations along the nozzle axis are shown for

the present test conditions. Selected numerical values are

presented in Table 3 for the nozzle exit conditions. As

seen here, the vibrational temperatures of N2 and NO are

considerably different, with N2 having the higher vibra-

tional temperature. The electron-electronic temperature
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is considerably higher than the N2 vibrational tempera-

ture. The flow is virtually frozen in the nozzle. Most of

the vibrational energy is contained in N2. The vibrational

energy of N2 is larger than the electron-electronic energy
at the exit of the nozzle.

.¢

b-

8 l l I I ] l J _

T,

Tv(N2)

T,,(NO)

T

O'
I ' '1 ' '1 ' I

0 40 80 120
Distance along nozzle axis, cm

Fig. 7. Calculated nozzle flow properties. (a) Tempera-
tures
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Fig. 7. (b) Species mole fractions.

The calculated equilibrium conditions in the shock

layer are presented in Table 4. The nonequilihrium pro-

cesses in the blunt body shock layer are calculated using
both one- and two-dimensional codes. The one dimen-

sional flow solution is obtained by the flow solver portion
of the NONEQ code, which is the same as that identi-

fled as STRAP in Ref. 7. The two-dimensional solution

is obtained using a code referred to as 2D2T.F described
in Ref'. 16. Both codes use a two-temperature model in

which the vibrational temperatures of the molecules, the

electronic excitation temperatures of all species, and the

electron thermal temperature are assumed to be the same.

The one-dimensional code has been validated against ex-
perimental data in Ref'. 7. The two-dimensional code

has been validated indirectly by comparing with the one-

dimensional code. Both these codes were originally writ-
ten for a freestream flow of undisturbed air. They were

modified to accommodate the nonequilibrium freestream

conditions of the present flow environment.

Table 4. Calculated equilibrium conditions in the shock

layer.

Pressure 0.0118 atm

Temperature 6430 K

Ar mole fraction 8.56-2

N2 mole fraction 3.44 -2

02 mole fraction 0

NO mole fraction 1.34 -4

N mole fraction 6.79-l

0 mole fraction 2.00-1

Ar+ mole fraction 3.46-s

N + mole fraction 5.07-4

O + mole fraction 1.59-4

NO + mole fraction 1.09-4

e- mole fraction 8.10-4

The two codes were run for the 30 MJ/kg case and at

higher enthalpies. The vibrational temperature of N2 de-
termined by NOZNT code was chosen as representative

of the vibrational-electron-electronic temperature ahead

of the shock wave in the one- and the two-dimensional

blunt body flow codes. A one-dimensional solution ob-

tained for a constant-area channel is shown in Fig. 1,

along with the total radiation emission power calculated
using the NONEQ code.

The solutionobtained from the one-dimensionalcode is

shown inFig. 8(a)and (b)forthe 30 MJ/kg case.As seen

in the figure,thereissubstantialvariationinthe temper-

aturesand concentrationsof the speciesacrossthe shock

layer. The two-dimensional code yieldedapproximately

the same results.

Spectral Calculation

The spectralintensitiesare calculatedforthe flowprop-

erties shown in Figs. 8(a) and (b) using the spectral part

of the NONEQ code. Presently the code allows calcula-

tion of nonequilibrium radiation only for nitrogen, oxygen,

and carbon. Therefore presence of argon was neglected

in the code. Figure 9 shows the comparison between

the measured "and the calculated spectra. As seen here,

the calculation approximately reproduces the intensities

of the atomic lines, but underestimates the background
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radiation composed of bound-free and free-free continua
and molecular radiation.

12- I I ___,1 1 I I I

the lower N2 vibrational temperature. Thus the initially

low vibrational-electron-electronic temperature produces
a slow rate of ionization behind the shock wave, which

in turn produces only a small increase in electron density
and continuum radiation behind the shock wave. There-

10

_g

8

x

= 6

F-

2

0

T

fore, the low background radiation at higher enthalpy is
not unreasonable.

10ol .... I .... I .... I .... , .... ,,,,

F

o _ CalCUlation / i UlIJ;["

 10,- D ii!

5 - i !.,,J,..;AIJ,,J.,J.H ,!.i!itF

Fig. 8. Calculated properties along the stagnation line.
(a) Temperatures.
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Fig. 8. (a) Species mole fractions.

In order to verify that this large discrepancy is not due

to the misjudgment of the enthalpy values, calculations

were made also with enthalpy values of 35, 40 and 45

MJ/kg. At these higher enthaIpies, the atomic line inten-

sities are calculated to be higher, by a factor within about

3, but the background radiation remained relatively un-

changed. This behavior is explained as follows: at higher

flow enthalpy, the electron concentration in the nozzle in-

creases. This causes the electron temperature to approach

.... I''''1 .... I .... I''

6000 6500 7000 7500 8000
Wavelength, A

8500

Fig. 9. Comparison between the measured and the calcu-

lated spectra.

Discussion

Equivalent Intensities

In order to explain the discrepancy between the exper-
imental and theoretical spectral intensities, it is hypothe-

sized that the ionization phenomena behind the bow shock
wave occurs at a rate faster than calculated due to the

highly excited freestream. Highly excited species require
little energy to vibrationaly excite or ionize. Computa-

tionally, this situation is implemented by (i) making the

vibrational relaxation times very short, (ii) lowering the

magnitude of the energy feedback in electron-impact ion-

ization (the energy depletion in the electron gas as a result

of eleetron-impact ionization), and (iii) increasing the rate
coefficients for electron-impact ionization reactions. The
vibrational relaxation times are taken to be those corre-

sponding to the elastic collisions; the energy feedback is

reduced arbitrarily to 1% of the ionization potential; and
the ionization rates are increased one thousand-fold.

In Fig. 10, the solution for the enhanced reaction rates

is compared with the original solution. As seen here, there

is a significant reduction in electron temperature in the

peak'region and an increase in total radiated power. Nev-

ertheless, the changes were unable to bring the calculated
values of the background radiation into agreement with
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the experimental values. In order to quantify the discrep-

• ancy between the calculated and the experimental values,
the calculation was repeated with the intensities of each

radiation sources multiplied by an arbitrary factor.
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Fig. 10. Comparison between the solution for the en-

hanced reactions case and the original solution.

Through a trim and error procedure, the factors that gave

the best agreement with the experimental data are given
in Table 5. The resulting synthetic spectrum is compared

with the experimental data in Fig. 11.

Table 5. The multiplicative factors to reproduce the ex-

perimental spectrum.

Source Factor

N lines 1

O lines 1

N + + e- bound-free continuum 6000

O + + e- bound-free continuum 6000

N + + e- free-freecontinuum 300

O + + e- free-freecontinuum 300

N2 FirstPositiveband system 50

N_+ FirstNegative band system 500

Explanation of Discrepancy

As shown in Fig. 1, the present experiment was con-

ducted in a highlynonequilibrium regime where the avail-

able flowresidencetime istoo shortforthenonequilibrium

radiationintensityto reach itspeak point.As mentioned

in Introduction,the flightexperiments,Bow Shock I and

Bow Shock 2, have demonstrated that calculationstend

to severelyunderestimate radiationintensitiesin such a

regime. In Fig. 12, the presentresultsare compared with

those of the two flight experiments. In the figure, the
ratios of the calculated to the measured intensities, the

reciprocals of the multiplicative factors in Table 2, are

shown as a function of flight altitude. Even though the

equivalent flight altitude of the present test is 71.6 km, it
is shown as 61.2 km. This is because the shock layer thick-

neas in the present experiment is approximately four times

that of the flight experiments, and therefore the equivalent
freestream density is four times the experimental value for

the same shock layer thickness.
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Fig. 11. Comparison between the measured spectra and
the spectra calculated with enhanced reaction rates and

intensity factors.

As indicated in Fig. 12, the calculated intensities are

orders of magnitude smaller than the measured values in

both the flight and the present experiments. The discrep-
ancy between the theory and measurement on the inten-

sity of the background radiation in the present experiment

is comparable with that found for the NO Gamma band in

the flight experiments. A discrepancy of similar extent is

found in a shock tube experiment of Ref. 10 between the

measured and the calculated intensities of the background

radiation at wavelengths above 600 nm.

The large discrepancy between the measurement and
the calculation in the intensities of the bound-free and

free-free continua might be due to the pseudo-continuum

caused by the large numbers of weak atomic .lines which
are neglected in the calculation. The NONEQ code ac-
counts for atomic lines listed in the NBS Tables. 22 The

Tables list only the lines from the states at or below the

principal quantum number of 3, and a few of those from

the principal quantum number of 4 and 5. However, there

are a l_ge number of atomic lines that emanate from the

principal quantum number of 4 and all those from the

principal quantum number above 4 that are unaccounted
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for in the NBS Tables. These neglected lines are mostly in

the infrared wavelength region longer than 700 am. The
widths of these lines are so broad that they appear as a

continuum. Whether this pseudo-continuum can account
for the missing radiation needs to be evMuated.

The discrepancy in the calculated intensities of the N2

First Positive and N + First Negative band systems is

thought to be caused by the inadequacy of the code of the
excitation code. The excitation portion of the NONEQ

presently includes only four excited electronic states. The

rate coefficients for collisional transitions among the states

considered have been obtained mostly by extrapolation

from the limited existing experimental data. Errors in the

rate coefficients so determined, and the fact that there are

transitions from many other electronic states, are believed

to be responsible for this discrepancy. Such shortcomings
of the NONEQ code can be corrected but it will require
considerable additional work.
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Fig. 12. The ratio between the calculated and the mea-

sured intensities of the present experiment compared with

those for the Bow Shock 1 and Bow Shock 2 flight exper-
iments.

The present work indicates that the features of the

nonequilibrium spectrum seen in an arc-jet wind tunnel
test are the same as those in flight or in a shock tube ex-

periment. This is an indication that an arc-jet experiment

can be used for the purpose of studying nonequilibrium

radiation phenomena. Work is presently in progress to re-

duce the visible and the vacuum ultraviolet spectral data

obtained in the experiments mentioned earlier.

Conclusions

The spectra of the shock layer radiation incident on the

stagnation point of a blunt body were measured in an arc-

jet wind tunnel in the wavelength range from 600 to 880

nm in a highly nonequilibrium regime using an air-argon

mixture as the test gas. Synthetic spectra were produced
through the computation of the constricted-arc character-

istics, nozzle flow, blunt body flow, and nonequilibrium
radiation phenomena: Most of the calculated intensities

of atomic lines agree approximately with the measured

values, but those for continua and molecular bands are

much weaker than the measured values. The discrepancy
between the measured and the calculated intensities is

similar to that found in two flight experiments and in

shock tube data. Possible explanations for the discrep-

ancy are presented. The present work shows also that an

arc-jet wind tunnel can be used for the study of nonequi-
librium radiation phenomenon.
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